
NAG Fortran Library Routine Document

E04KZF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E04KZF is an easy-to-use modified Newton algorithm for finding a minimum of a function
F ðx1; x2; . . . ; xnÞ, subject to fixed upper and lower bounds on the independent variables x1; x2; . . . ; xn,
when first derivatives of F are available. It is intended for functions which are continuous and which have
continuous first and second derivatives (although it will usually work even if the derivatives have
occasional discontinuities).

2 Specification

SUBROUTINE E04KZF(N, IBOUND, FUNCT2, BL, BU, X, F, G, IW, LIW, W, LW,
1 IUSER, USER, IFAIL)

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
real BL(N), BU(N), X(N), F, G(N), W(LW), USER(*)
EXTERNAL FUNCT2

3 Description

This routine is applicable to problems of the form:

MinimizeF ðx1; x2; . . . ; xnÞ subject to lj � xj � uj; j ¼ 1; 2; . . . ; n

when first derivatives are known.

Special provision is made for problems which actually have no bounds on the xj, problems which have

only non-negativity bounds, and problems in which l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un. The user
must supply a subroutine to calculate the values of F ðxÞ and its first derivatives at any point x.

From a starting point supplied by the user there is generated, on the basis of estimates of the gradient of
the curvature of F ðxÞ, a sequence of feasible points which is intended to converge to a local minimum of
the constrained function.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Parameters

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND ¼ 0

If the user will be supplying all the lj and uj individually.

E04 – Minimizing or Maximizing a Function E04KZF

[NP3546/20A] E04KZF.1

IBOUND ¼ 1

If there are no bounds on any xj.

IBOUND ¼ 2

If all the bounds are of the form 0 � xj.

IBOUND ¼ 3

If l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

Constraint: 0 � IBOUND � 3.

3: FUNCT2 – SUBROUTINE, supplied by the user. External Procedure

This routine must be supplied by the user to calculate the values of the function F ðxÞ and its first

derivatives
@F

@xj

at any point x. It should be tested separately before being used in conjunction with

E04KZF (see Chapter E04).

Its specification is:

SUBROUTINE FUNCT2(N, XC, FC, GC, IUSER, USER)

INTEGER N, IUSER(*)
real XC(N), FC, GC(N), USER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XC(N) – real array Input

On entry: the point x at which the function and derivatives are required.

3: FC – real Output

On exit: the value of the function F at the current point x,

4: GC(N) – real array Output

On exit: GCðjÞ must be set to the value of the first derivative
@F

@xj
at the point x, for

j ¼ 1; 2; . . . ; n.

5: IUSER(*) – INTEGER array User Workspace
6: USER(*) – real array User Workspace

FUNCT2 is called from E04KZF with the parameters IUSER and USER as supplied to
E04KZF. The user is free to use the arrays IUSER and USER to supply information to
FUNCT2 as an alternative to using COMMON.

FUNCT2 must be declared as EXTERNAL in the (sub)program from which E04KZF is called.
Parameters denoted as Input must not be changed by this procedure.

4: BL(N) – real array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, the user must set BLðjÞ to lj, for j ¼ 1; 2; . . . ; n. (If a lower bound is not

specified for a particular xj, the corresponding BLðjÞ should be set to �106.)

If IBOUND is set to 3, the user must set BL(1) to l1; E04KZF will then set the remaining elements
of BL equal to BL(1).

On exit: the lower bounds actually used by E04KZF.

E04KZF NAG Fortran Library Manual

E04KZF.2 [NP3546/20A]

5: BU(N) – real array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, the user must set BUðjÞ to uj, for j ¼ 1; 2; . . . ; n. (If an upper bound is not

specified for a particular xj, the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, the user must set BU(1) to u1; E04KZF will then set the remaining elements
of BU equal to BU(1).

On exit: the upper bounds actually used by E04KZF.

6: X(N) – real array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the gradient at the starting point, and is more likely to detect
any error in the user’s programming if the initial XðjÞ are non-zero and mutually distinct.

On exit: the lowest point found during the calculations of the position of the minimum.

7: F – real Output

On exit: the value of F ðxÞ corresponding to the final point stored in X.

8: G(N) – real array Output

On exit: the value of
@F

@xj
corresponding to the final point stored in X, for j ¼ 1; 2; . . . ; n; the value

of GðjÞ for variables not on a bound should normally be close to zero.

9: IW(LIW) – INTEGER array Workspace
10: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KZF is
called.

Constraint: LIW � Nþ 2.

11: W(LW) – real array Workspace
12: LW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KZF is
called.

Constraint: LW � maxðN� ðNþ 7Þ; 10Þ.

13: IUSER(*) – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04KZF, but is passed directly to FUNCT2 and may be used to pass
information to that routine.

14: USER(*) – real array User Workspace

Note: the dimension of the array USER must be at least 1.

USER is not used by E04KZF, but is passed directly to FUNCT2 and may be used to pass
information to that routine.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

E04 – Minimizing or Maximizing a Function E04KZF

[NP3546/20A] E04KZF.3

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < maxð10;N� ðNþ 7ÞÞ.

IFAIL ¼ 2

There has been a large number of function evaluations, yet the algorithm does not seem to be
converging. The calculations can be restarted from the final point held in X. The error may also
indicate that F ðxÞ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and the
algorithm has failed.

IFAIL ¼ 4

Not used. (This value of the parameter is included to make the significance of IFAIL ¼ 5 etc.
consistent in the easy-to-use routines.)

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04KZF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that the
final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very unlikely
that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large ð� 106Þ.
This indicates that there is a mistake in FUNCT2, that the user’s problem has no finite solution, or
that the problem needs rescaling (see Section 8).

IFAIL ¼ 10

It is very likely that the user has made an error in forming the gradient.

If the user is dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure. If persistent trouble occurs and it is possible to calculate second

E04KZF NAG Fortran Library Manual

E04KZF.4 [NP3546/20A]

derivatives it may be advisable to change to a routine which uses second derivatives (see the E04 Chapter
Introduction).

7 Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x and about t� 1 decimals accuracy in F , provided the problem is
reasonably well scaled.

8 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F ðxÞ and the
distance of the starting point from the solution. The number of operations performed in an iteration of

E04KZF is roughly proportional to n3 þ Oðn2Þ. In addition, each iteration makes at least mþ 1 calls of
FUNCT2 where m is the number of variables not fixed on bounds. So unless F ðxÞ and the gradient
vector can be evaluated very quickly, the run time will be dominated by the time spent in FUNCT2.

Ideally the problem should be scaled so that at the solution the value of F ðxÞ and the corresponding values
of x1; x2; . . . ; xn are in the range ð�1;þ1Þ, and so that at points a unit distance away from the solution, F
is approximately a unit value greater than at the minimum. It is unlikely that the user will be able to
follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will
reduce the difficulty of the minimization problem, so that E04KZF will take less computer time.

9 Example

A program to minimize

F ¼ ðx1 þ 10x2Þ2 þ 5ðx3 � x4Þ2 þ ðx2 � 2x3Þ4 þ 10ðx1 � x4Þ4

subject to

1 � x1 � 3

�2 � x2 � 0

1 � x4 � 3

starting from the initial guess (3, �1, 0, 1).

In practice, it is worth trying to make FUNCT2 as efficient as possible. This has not been done in the
example program for reasons of clarity.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* E04KZF Example Program Text.
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER N, LIW, LW
PARAMETER (N=4,LIW=N+2,LW=N*(N+7))
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real F
INTEGER IBOUND, IFAIL, J

* .. Local Arrays ..
real BL(N), BU(N), G(N), USER(1), W(LW), X(N)
INTEGER IUSER(1), IW(LIW)

* .. External Subroutines ..
EXTERNAL E04KZF, FUNCT2

* .. Executable Statements ..
WRITE (NOUT,*) ’E04KZF Example Program Results’
X(1) = 3.0e0
X(2) = -1.0e0

E04 – Minimizing or Maximizing a Function E04KZF

[NP3546/20A] E04KZF.5

X(3) = 0.0e0
X(4) = 1.0e0
IBOUND = 0
BL(1) = 1.0e0
BU(1) = 3.0e0
BL(2) = -2.0e0
BU(2) = 0.0e0

*
* X(3) is unconstrained, so we set BL(3) to a large negative
* number and BU(3) to a large positive number.
*

BL(3) = -1.0e6
BU(3) = 1.0e6
BL(4) = 1.0e0
BU(4) = 3.0e0
IFAIL = 1

*
CALL E04KZF(N,IBOUND,FUNCT2,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER,

+ IFAIL)
*

IF (IFAIL.NE.0) THEN
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Error exit type’, IFAIL,

+ ’ - see routine document’
END IF
IF (IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Function value on exit is ’, F
WRITE (NOUT,99998) ’at the point’, (X(J),J=1,N)
WRITE (NOUT,*)

+ ’the corresponding (machine dependent) gradient is’
WRITE (NOUT,99997) (G(J),J=1,N)

END IF
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,4F12.4)
99997 FORMAT (13X,4e12.4)

END
*

SUBROUTINE FUNCT2(N,XC,FC,GC,IUSER,USER)
* Routine to evaluate objective function and its 1st derivatives.
* .. Scalar Arguments ..

real FC
INTEGER N

* .. Array Arguments ..
real GC(N), USER(*), XC(N)
INTEGER IUSER(*)

* .. Local Scalars ..
real X1, X2, X3, X4

* .. Executable Statements ..
X1 = XC(1)
X2 = XC(2)
X3 = XC(3)
X4 = XC(4)
FC = (X1+10.0e0*X2)**2 + 5.0e0*(X3-X4)**2 + (X2-2.0e0*X3)**4 +

+ 10.0e0*(X1-X4)**4
GC(1) = 2.0e0*(X1+10.0e0*X2) + 40.0e0*(X1-X4)**3
GC(2) = 20.0e0*(X1+10.0e0*X2) + 4.0e0*(X2-2.0e0*X3)**3
GC(3) = 10.0e0*(X3-X4) - 8.0e0*(X2-2.0e0*X3)**3
GC(4) = -10.0e0*(X3-X4) - 40.0e0*(X1-X4)**3
RETURN
END

9.2 Program Data

None.

E04KZF NAG Fortran Library Manual

E04KZF.6 [NP3546/20A]

9.3 Program Results

E04KZF Example Program Results

Error exit type 5 - see routine document

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
the corresponding (machine dependent) gradient is

0.2953E+00 -0.5875E-09 0.1177E-08 0.5907E+01

E04 – Minimizing or Maximizing a Function E04KZF

[NP3546/20A] E04KZF.7 (last)

	E04KZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	IBOUND
	FUNCT2
	N
	XC
	FC
	GC
	IUSER
	USER

	BL
	BU
	X
	F
	G
	IW
	LIW
	W
	LW
	IUSER
	USER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

